Human pluripotent stem cells decouple respiration from energy production.

نویسندگان

  • Ng Shyh-Chang
  • Yuxiang Zheng
  • Jason W Locasale
  • Lewis C Cantley
چکیده

Human pluripotent stem cells (hPSCs) rely heavily on glycolysis for energy metabolism, and because their mitochondria appear poorly developed, hPSCs have been assumed to be incapable of using oxidative phosphorylation (OxPhos). In this issue, Zhang et al (2011) demonstrate that hPSCs actually possess functional OxPhos machinery, but that the mitochondrial protein UCP2 decouples OxPhos from glycolysis. The study further suggests that regulation of glucose metabolism by UCP2 facilitates hPSC pluripotency and controls hPSC differentiation. Pluripotent embryonic stem cells require an exceptionally high flux of glucose uptake and lactate production, even when these cells grow in aerobic conditions outside the hypoxic blastocyst (aerobic glycolysis) (Prigione et al, 2010). In contrast, differentiated cells often require lower rates of aerobic glycolysis and shunt most of the cytosolic pyruvate into mitochondria where it is oxidized via the Krebs cycle and the electron transport chain (ETC) to synthesize ATP, a process collectively known as OxPhos. Consistent with these observations, hPSC mitochondria possess poorly developed cristae that only enlarge to form a densely tubular structure upon differentiation, which led some to conclude that hPSCs lack functional mitochondria (Facucho-Oliveira et al, 2007). However, how this switch occurs and whether a specific mitochondrial physiology is required for maintenance of the pluripotent state remained unclear. Zhang et al (2011) now show that hPSCs actually possess functional OxPhos machinery. In fact, hPSC mitochondria consume oxygen at rates similar to differentiated cell mitochondria. Unlike that of differentiated cells, glucose uptake is less coupled to OxPhos in hPSCs, and instead hPSCs predominantly use glycolysis to generate ATP. Furthermore, the authors inferred that ATP synthesis is also less coupled to the ETC in hPSCs and that ATP synthase may even be hydrolyzing ATP. Although more work is needed to establish this claim, it raises the intriguing possibility that ATP consumption in hPSCs is supporting an optimal membrane potential that promotes biosynthetic growth, just like in cancer cells (Racker 1976; Vander Heiden et al, 2010). Yet how is OxPhos decoupled from glycolysis in hPSCs? Zhang et al (2011) found that ectopic expression of UCP2 suppressed OxPhos during hPSC differentiation, while UCP2 knockdown decreased lactate production (Figure 1). Importantly, ectopic UCP2 also impeded hPSC differentiation, suggesting that relieving UCP2-mediated suppression of OxPhos is required for differentiation. UCP2 belongs to the uncoupling protein (UCP) family. UCP1 transports protons to dissipate the membrane potential and uncouples ATP synthesis from the ETC. In contrast, UCP2 is still a subject of controversy. UCP2 transports protons in vitro, but apparently not in vivo (Couplan et al, 2002). Instead, studies have shown that UCP2 decreases pyruvate oxidation, suggesting that UCP2 decouples glycolysis from OxPhos by shunting pyruvate out of the mitochondria (Emre and Nubel, 2010). Zhang et al (2011) provide evidence to support this view. By using C-isotope tracing, the authors

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Establishment and the importance of chicken pluripotent stem cells and their role in vaccine production: review article

Chick embryos are a great historical research model in basic and applied sciences. Along with other animal models, avian and specifically chicken embryo has been attended, as well. Avian fertilized eggs as a natural bioreactor are an efficient tool for producing recombinant proteins and vaccines manufacturing. Due to the limitations of birds' eggs for viral replication, avian stem cells culture...

متن کامل

Induced pluripotent stem cells (iPSCs) based approaches for hematopoietic cancer therapy

Induced pluripotent stem cells (iPSCs) are reprogrammed from somatic cells through numerous transcription factors. Human induced pluripotent stem cell approaches are developing as a hopeful strategy to improve our knowledge of genetic association studies and the underlying molecular mechanisms.  Rapid progression in stem cell therapy and cell reprogramming provides compelling reasons for its fe...

متن کامل

A Quick update from the Past to Current Status of Human Pluripotent Stem Cell-derived Hepatocyte culture systems

Pluripotent stem cells (PSCs) may be offered as an unlimited cell source for the hepatocyte generation. The generation of hepatocytes from stem cells in vitro would provide an alternative cell source for applications in drug discovery and cell transplantation. In this review, we discuss different approaches to generate pluripotent stem cell-derived hepatocytes, advantages, limitations for each ...

متن کامل

Large-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications

Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...

متن کامل

P-50: Elongating and Elongated Spermatids Manufactured In Vitro from Non-Human Primate Pluripotent Stem Cells

Background: We have recently shown that human embryonic (hESCs) and induced pluripotent stem cells (hiPSCs) can differentiate into advanced spermatogenic cells including round spermatids by in vitro culture (Easley et al., Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Reports 2, 440-446 2012) and also, in collaboration, that rhesus spermatogonial ...

متن کامل

سلول‏های بنیادی پرتوان القایی از تولید تا کاربرد: مقاله مروری

Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation), these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 30 24  شماره 

صفحات  -

تاریخ انتشار 2011